

    
      
          
            
  
fmf

The fmf Python module and command line tool implement a
flexible format for defining metadata in plain text files which
can be stored close to the source code. Thanks to hierarchical
structure with support for inheritance and elasticity it provides
an efficient way to organize data into well-sized text documents.


Table of Contents



	Overview

	Concept

	Features

	Context

	Examples

	Modules

	Contribute







Indices and Tables


	Index


	Module Index








          

      

      

    

  

    
      
          
            
  
fmf

Flexible Metadata Format


Description

The fmf Python module and command line tool implement a
flexible format for defining metadata in plain text files which
can be stored close to the source code and structured in a
hierarchical way with support for inheritance.

Although the proposal initially originated from user stories
centered around test execution, the format is general and thus
can be used in broader scenarios, e.g. test coverage mapping.

Using this approach it’s also possible to combine both test
execution metadata and test coverage information. Thanks to
elasticity and hierarchy it provides ability to organize data
into well-sized text documents while preventing duplication.



Synopsis

Command line usage is straightforward:

fmf command [options]





There are following commands available:

fmf ls      List identifiers of available objects
fmf show    Show metadata of available objects
fmf init    Initialize a new metadata tree
fmf clean   Remove cache directory and its content







Examples

List names of all objects stored in the metadata tree:

fmf ls





Show all test metadata (with ‘test’ attribute defined):

fmf show --key test





Show metadata for all tree nodes (not only leaves):

fmf show --key test --whole





List all attributes for the /recursion tests:

fmf show --key test --name /recursion





Show all covered requirements:

fmf show --key requirement --key coverage





Search for all tests with the Tier1 tag defined and show a
brief summary of what was found:

fmf show --key test --filter tags:Tier1 --verbose





Use arbitrary Python expressions to access deeper objects and
create more complex conditions:

fmf show --condition "execute['how'] == 'shell'"





Initialize a new metadata tree in the current directory:

fmf init





Check help message of individual commands for the full list of
available options.



Options

Here is the list of the most frequently used options.


Select

Limit which metadata should be listed.


	--key=KEYS

	Key content definition (required attributes)



	--name=NAMES

	List objects with name matching regular expression



	--filter=FLTRS

	Apply advanced filter when selecting objects



	--condition=EXPR

	Use arbitrary Python expression for filtering



	--whole

	Consider the whole tree (leaves only by default)





For filtering regular expressions can be used as well. See
pydoc fmf.filter for advanced filtering options.



Format

Choose the best format for showing the metadata.


	--format=FMT

	Custom output format using the {} expansion



	--value=VALUES

	Values for the custom formatting string





See online documentation for details about custom format.



Utils

Various utility options.


	--path PATHS

	Path to the metadata tree (default: current directory)



	--verbose

	Print additional information standard error output



	--debug

	Turn on debugging output, do not catch exceptions





Check help message of individual commands for the full list of
available options.




Install

The fmf package is available in Fedora and EPEL:

dnf install fmf





Install the latest version from the Copr repository:

dnf copr enable psss/fmf
dnf install fmf





or use PIP:

pip install fmf





See documentation for more details about installation options.



Variables

Here is the list of environment variables understood by fmf:


	FMF_CACHE_DIRECTORY

	Directory used to cache git clone calls for fmf identifiers.







Links

Git:
https://github.com/psss/fmf

Docs:
http://fmf.readthedocs.io/

Issues:
https://github.com/psss/fmf/issues

Releases:
https://github.com/psss/fmf/releases

Copr:
http://copr.fedoraproject.org/coprs/psss/fmf

PIP:
https://pypi.org/project/fmf/

Travis:
https://travis-ci.org/psss/fmf

Coveralls:
https://coveralls.io/github/psss/fmf



Authors

Petr Šplíchal, Miro Hrončok, Jakub Krysl, Jan Ščotka, Alois
Mahdal, Cleber Rosa, Miroslav Vadkerti, Lukáš Zachar and František
Nečas.



Copyright

Copyright (c) 2018-2021 Red Hat, Inc.

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.





          

      

      

    

  

    
      
          
            
  
Concept

In order to keep test execution efficient when number of test
cases grows, it is crucial to maintain corresponding metadata,
which define some aspects of how the test coverage is executed.

This tool implements a flexible format for defining metadata in
plain text files which can be stored close to the test code and
structured in a hierarchical way with support for inheritance.

Although the proposal initially originated from user stories
centered around test execution, the format is general and thus
can be used in broader scenarios, e.g. test coverage mapping.

Using this approach it’s also possible to combine both test
execution metadata and test coverage information. Thanks to
elasticity and hierarchy it provides ability to organize data
into well-sized text documents while preventing duplication.


Stones

These are essential corner stones for the design:


	Text files under version control


	Keep common uses cases simple


	Use hierarchy to organize content


	Prevent duplication where possible


	Metadata close to the test code


	Solution should be open source


	Focus on essential use cases






Stories

Important user stories to be covered:


	As a tester or developer I want to easy read and modify metadata and see history.


	As a tester I want to select a subset of test cases for execution by specifying a tag.


	As a tester I want to define a maximum time for a test case to run.


	As a tester I want to specify which environment is relevant for testing.


	As a user I want to easily define common metadata for multiple cases to simplify maintenance.


	As a user I want to provide specific metadata for selected tests to complement common metadata.


	As an individual tester and test contributor I want to execute specific single test case.


	As an automation tool I need a metadata storage with good api, extensible, quick for reading.






Choices

These choices have been made:


	Use git for version control and history of changes.


	Yaml format easily readable for both machines and humans.






Files

A dedicated file name extension fmf as an abbreviation of
Flexible Metadata Format is used to easily find all metadata
files on the filesystem:


	smoke.fmf


	main.fmf




Special file name main.fmf works similarly as index.html.
It can be used to define the top level data for the directory.



Attributes

The format does not define attribute naming in any way. This is up
to individual projects. The only exception is the special name
main which is reserved for main directory index.

Attribute namespacing can be introduced as needed to prevent
collisions between similar attributes. For example:


	test-description, requirement-description


	test:description, requirement:description


	test_description, requirement_description






Trees

Metadata form a tree where inheritance is applied. The tree root
is defined by an .fmf directory (similarly as .git
identifies top of the git repository). The .fmf directory
contains at least a version file with a single integer number
defining version of the format.



Names

Individual tree nodes are identified by path from the metadata
root directory plus optional hierarchy defined inside yaml files.
For example, let’s have the metadata root defined in the wget
directory. Below you can see node names for different files:








	Location

	Name





	wget/main.fmf

	/



	wget/download/main.fmf

	/download



	wget/download/smoke.fmf

	/download/smoke











Identifiers

Node names are unique across the metadata tree and thus can be
used as identifiers for local referencing across the same tree. In
order to reference remote fmf nodes from other trees a full fmf
identifier is defined as a dictionary containing keys with the
following meaning:


	url

	Git repository containing the metadata tree. Use any format
acceptable by the git clone command. Optional, if no
repository url is provided, local files will be used.



	ref

	Branch, tag or commit specifying the desired git revision.
This is used to perform a git checkout in the repository.
If not provided, the default branch is used.



	path

	Path to the metadata tree root. Should be relative to the git
repository root if url provided, absolute local filesystem
path otherwise. Optional, by default . is used.



	name

	Node name as defined by the hierarchy in the metadata tree.
Optional, by default the parent node / is used, which
represents the whole metadata tree.





Here’s a full fmf identifier example:

url: https://github.com/psss/fmf
ref: 0.10
path: /examples/wget
name: /download/test





Use default values for ref and path to reference the
latest version of the smoke plan from the default branch:

url: https://github.com/psss/fmf
name: /plans/smoke





If desired, it is also possible to write the identifier on a
single line as supported by the yaml format:

{url: "https://github.com/psss/fmf", name: "/plans/smoke"}





Let’s freeze the stable test version by using a specific commit:

url: https://github.com/psss/fmf
ref: f24ef3f
name: /tests/basic/filter





Reference a smoke plan from another metadata tree stored on the
local filesystem:

path: /home/psss/git/tmt
name: /plans/smoke





Local reference across the same metadata tree is also supported:

name: /plans/smoke









          

      

      

    

  

    
      
          
            
  
Features

Let’s demonstrate the features on a simple wget example with the
following directory structure:

wget
├── download
├── protocols
│   ├── ftp
│   ├── http
│   └── https
├── recursion
└── smoke






Simple

The most common use cases super simple to read & write. Test
metadata for a single test look like this:

description: Check basic download options
tester: Petr Šplíchal <psplicha@redhat.com>
tags: [Tier2, TierSecurity]
test: runtest.sh
time: 3 min







Hierarchy

Hierarchy is defined by directory structure (see example above) and
explicit nesting using attributes starting with /.  Defining
metadata for several tests in a single file is straightforward:

/download:
    description: Check basic download options
    tester: Petr Šplíchal <psplicha@redhat.com>
    tags: [Tier2, TierSecurity]
    test: runtest.sh
    time: 3 min
/recursion:
    description: Check recursive download options
    tester: Petr Šplíchal <psplicha@redhat.com>
    tags: [Tier2, TierSecurity]
    test: runtest.sh
    time: 20 min





Content above would be stored in wget/main.fmf file.



Inheritance

Metadata is inherited from parent objects:

tester: Petr Šplíchal <psplicha@redhat.com>
tags: [Tier2, TierSecurity]
test: runtest.sh

/download:
    description: Check basic download options
    time: 3 min
/recursion:
    description: Check recursive download options
    time: 20 min





This nicely prevents unnecessary duplication. Redefining an
attribute in a child object will by default overwrite value
inherited from the parent.



Merging

When inheriting values from the parent it is also possible to use
special attribute suffixes to merge child value with parent data.
Append a + sign to the attribute name to add given value:

time: 1
/download:
    time+: 3





This operation is possible only for attributes of the same type.
Exception MergeError is raised if types are different. When
the + suffix is applied on dictionaries update() method is
used to merge content of given dictionary instead of replacing it.

In a similar way, appending a - sign will reduce or remove
parent value from parent’s attribute (which has to be defined):

time-: 5
tags-: [Tier2]
desc-: details.*
vars-: [z]





Numbers are subtracked, list items are removed from the parent
attribute, matching regular expressions are replaced by an empty
string. For dictionaries it’s possible to provide list of keys
which should be removed.



Elasticity

Use a single file or scatter metadata across the hierarchy,
whatever is more desired for the project.

File wget/main.fmf:

tester: Petr Šplíchal <psplicha@redhat.com>
tags: [Tier2, TierSecurity]
test: runtest.sh





File wget/download/main.fmf:

description: Check basic download options
time: 3 min





File: wget/recursion/main.fmf:

description: Check recursive download options
time: 20 min





This allows reasonable structure for both small and large
projects.



Scatter

Thanks to elasticity, metadata can be scattered across several
files. For example wget/download metadata can be defined in
the following three files:

File wget/main.fmf:

/download:
    description: Check basic download options
    test: runtest.sh





File wget/download.fmf:

description: Check basic download options
test: runtest.sh





File wget/download/main.fmf:

description: Check basic download options
test: runtest.sh





Parsing is done from top to bottom (in the order of examples
above). Later/lower defined attributes replace values defined
earlier/higher in the structure.



Leaves

When searching, key content is used to define which leaves
from the metadata tree will be selected. For example, every test
case to be executed must have the test attribute defined,
every requirement to be considered for test coverage evaluation
must have the requirement attribute defined. Otherwise object
data is used for inheritance only:

description: Check basic download options
test: runtest.sh
time: 3 min





The key content attributes are not supposed to be hard-coded in
the Flexible Metadata Format but freely configurable. Multiple key
content attributes (e.g. script & backend) could be used as well.



Virtual

Using a single test code for testing multiple scenarios can be
easily implemented using leaves inheriting from the same parent:

description: Check basic download options
test: runtest.sh

/fast:
    description: Check basic download options (quick smoke test)
    environment: MODE=fast
    tags: [Tier1]
    time: 1 min
/full:
    description: Check basic download options (full test set)
    environment: MODE=full
    tags: [Tier2]
    time: 3 min





In this way we can efficiently create virtual test cases.



Adjust

It is possible to adjust attribute values based on the current
Context, for example disable test if it’s not relevant for
given environment:

enabled: true
adjust:
    enabled: false
    when: distro ~< fedora-33
    because: the feature was added in Fedora 33





Note that this functionality reserves the following attributes for
its usage:


	when

	The condition to be evaluated in order to decide if the
metadata should be merged. This is a required key.



	continue

	By default, all provided rules are evaluated. When set to
false, the first successful rule finishes the evaluation
and the rest is ignored.



	because

	An optional comment with justification of the adjustment.
Should be a plain string.





Name of the attribute which contains rules to be evaluated can be
arbitrary. In the example the default key adjust is used.



Format

When investigating metadata using the fmf command line tool,
object identifiers and all associated attributes are printed by
default, each on a separate line. It is also possible to use the
--format option together with --value options to generate
custom output. Python syntax for expansion using {} is used to
place values as desired. For example:

fmf --format 'name: {0}, tester: {1}\n' \
    --value 'name' --value 'data["tester"]'





Individual attribute values can be accessed through the data
dictionary, variable name contains the object identifier and
root is assigned to directory where metadata tree is rooted.

Python modules os and os.path as well as other python
functions are available and can be used for processing attribute
values as desired:

fmf --format '{}' --value 'os.dirname(data["path"])'









          

      

      

    

  

    
      
          
            
  
Context


Motivation

Imagine you have a test which can run only for Fedora 33 and
newer. Or your tests’ require depend on which distribution you
are running. For these cases you need just a slight tweak to your
metadata but you can’t really use the Virtual cases as only
one of them should run.

This is exactly where adjusting metadata based on the given
Context will help you. Let’s see some examples to demonstrate the
usage on a real-life use case.

Disable test by setting the enabled attribute:

enabled: true
adjust:
    enabled: false
    when: distro < fedora-33
    because: The feature was added in Fedora-33





Tweak the require attribute for an older distro:

require:
  - procps-ng
adjust:
    require: procps
    when: distro ~= centos-6







Syntax

To get a better idea of the when condition syntax including
supported operators consult the following grammar outline:

condition ::= expression (bool expression)*
bool ::= and | or
expression ::= dimension binary_operator values
expression ::= dimension unary_operator
dimension ::= [[:alnum:]]+
binary_operator ::= '==' | '!=' | '<' | '<=' | '>' | '>=' |
    '~=' | '~!=' | '~<' | '~<=' | '~>' | '~>='
unary_operator ::= 'is defined' | 'is not defined'
values ::= value (',' value)*
value ::= [[:alnum:]]+






Lazy Evaluation

Operator and takes precedence over or and rule evaluation
is lazy. It stops immediately when we know the final result.



Boolean Operations

When a dimension or outcome of the operation is not defined,
the expression is treated as CannotDecide.

Boolean operations with CannotDecide:

CannotDecide  and  True         ==  CannotDecide
CannotDecide  and  False        ==  False
CannotDecide  or   True         ==  True
CannotDecide  or   False        ==  CannotDecide
CannotDecide  and  CannotDecide ==  CannotDecide
CannotDecide  or   CannotDecide ==  CannotDecide








Dimensions

Each Dimension is a view on the Context in which metadata can be
adjusted. For example it can be arch, distro, component, product
or pipeline in which we run tests and so on.

Each value is treated as if it was a component with version. Name
of the dimension doesn’t matter, all are treated equally.

The characters : or . or - are used as version
separators and are handled in the same way. The following examples
demonstrate how the name and version parts are parsed:

centos-8.3.0
    name: centos
    version: 8, 3, 0

python3-3.8.5-5.fc32
    name: python3
    version: 3, 8, 5, 5, fc32

x86_64
    name: x86_64
    version: no version parts







Comparison

Value on the left always comes from dimension, it describes what
is known about the context and should be as specific as possible
(this is up to the calling tool). Value on the right comes from
the rule and the creator of this rule sets how precise they want
to be.

When the left side is not specific enough its missing version
parts are treated as if they were lower than the right side.
However, the left side needs to contain at least one version
part:

git-2.3.4 < git-3   # True
git-2 < git-3.2.1   # True
git < git-3.2.1     # CannotDecide






Equality vs Comparison

It is always possible to evaluate whether two values are (not)
equal. When the name and common version parts requested by the
right side match then the two values are equal:

git-2.3.4 == git-2.3.4
git-2.3.4 == git-2.3
git-2.3.4 == git-2
git-2.3.4 == git
git-2.3.4 != git-1
git-2.3.4 != fmf





However, comparing order of two values is defined only if they
match by name. If names don’t match then values cannot be
compared and the expression has CannotDecide outcome:

git-2.3.4 >= git-2     # True
git-2.3.4 >= git-3     # False
git-2.3.4 >= fmf-2     # CannotDecide







Major Version

Comparing distributions across their major versions can be tricky.
One cannot easily say that e.g. centos-8.0 > centos-7.9. In
this case centos-8.0 was released sooner than centos-7.9
so is it really newer?

Quite often new features are implemented in given minor version
such as centos-7.9 or centos-8.2 which does not mean they
are available in centos-8.1 so it is not possible to apply a
single rule such as distro >= centos-7.9 to cover this case.

Another usage for this operators is to check for features specific
to a particular major version or a module stream.

The following operators make it possible to compare only within
the same major version:

'~=' | '~!=' | '~<' | '~<=' | '~>' | '~>='





If their major versions are different then their minor versions
cannot be compared and as such are skipped during evaluation. The
following example shows how the special less than operator ~<
would be evaluated for given centos versions. Note that the
right side defines if the minor comparison is evaluated or not.









	~<

	centos-7.9

	centos-8.2

	centos-8



	centos-7.8

	True

	CannotDecide

	True



	centos-7.9

	False

	CannotDecide

	True



	centos-7

	CannotDecide

	CannotDecide

	True



	centos-8.1

	CannotDecide

	True

	False



	centos-8.2

	CannotDecide

	False

	False



	centos-8

	CannotDecide

	CannotDecide

	False






Here is a couple of examples to get a better idea of how the
comparison works for some special cases:

fedora < fedora-33 ---> cannot (left side has no version parts)
fedora-33 == fedora ---> True (right side wants only name)
fedora-33 < fedora-rawhide ---> True (rawhide is newer than any number)

centos-8.4.0 == centos ---> True
centos-8.4.0 < centos-9 ---> True
centos-8.4.0 ~< centos-9 ---> True (no minor comparison requested)
centos-8.4.0 ~< centos-9.2 ---> cannot (minor comparison requested)










          

      

      

    

  

    
      
          
            
  
Examples

Let’s have a look at a couple of real-life examples!


Coverage

Test coverage information can be stored in a single file, for
example wget/requirements.fmf:

/protocols:
    priority: high
    /ftp:
        requirement: Download a file using the ftp protocol.
        coverage: wget/protocols/ftp
    /http:
        requirement: Download a file using the http protocol.
        coverage: wget/protocols/http
    /https:
        requirement: Download a file using the https protocol.
        coverage: wget/protocols/https

/download:
    priority: medium
    /output-document-pipe:
        requirement: Save content to pipe.
        coverage: wget/download
    /output-document-file:
        requirement: Save content to a file.
        coverage: wget/download

/upload:
    priority: medium
    /post-file:
        requirement: Upload a file to the server
        coverage: wget/protocols/http
    /post-data:
        requirement: Upload a string to the server
        coverage: wget/protocols/http





Or split by functionality area into separate files as desired, for
example wget/download/requirements.fmf:

priority: medium
/output-document-pipe:
    requirement: Save content to pipe.
    coverage: wget/download
/output-document-file:
    requirement: Save content to a file.
    coverage: wget/download





Or integrated with test case metadata, e.g.
wget/download/main.fmf:

description: Check basic download options
tags: [Tier2, TierSecurity]
test: runtest.sh
time: 3 min

/requirements:
    requirement: Various download options working correctly
    priority: low
    /get-file:
        coverage: wget/download
    /output-document:
        coverage: wget/download
    /continue:
    /timestamping:
    /tries:
    /no-clobber:
        coverage: wget/download
    /progress:
    /quota:
    /server-response:
    /bind-address:
    /spider:





In the example above three requirements are already covered,
the rest still await for test coverage (attributes value is null).



Strategist

Here’s an example implementation of test-strategist [https://github.com/dahaic/test-strategist] data for
openscap using the Flexible Metadata Format:

/probes:
    description: Probes
    /offline:
        description: Offline scanning
    /online:
        description: Online scanning
/scanning:
    description: Reading and understanding source datastreams
    /oval:
        influencers:
        - openscap/probes/offline
        - openscap/probes/online
    /ds:
        influencers:
        - openscap/scanning/oval
        - openscap/scanning/cpe
    /cpe:
        influencers:
        - openscap/scanning/oval







Setups

This example shows how to use Flexible Metadata Format to
run tests with different storage setups including cleanup.
This is simplified metadata, whole example including tools
can be found at storage_setup [https://github.com/jkrysl/storage_setup]:

/setups:
    description: Tests to prepare and clean up devices for tests
    setup: True
    /setup_local:
        test: setup_local.py
        requires_cleanup: setups/cleanup_local
    /cleanup_local:
        test: cleanup_local.py
    /setup_remote:
        test: setup_remote.py
        requires_cleanup: setups/cleanup_remote
    /cleanup_remote:
        test: cleanup_remote.py
    /setup_vdo:
        test: setup_vdo.py
        requires_cleanup: setups/cleanup_vdo
    /cleanup_vdo:
        test: cleanup_vdo.py
/tests:
    description: Testing 'vdo' command line tool
    requires_setup: [setups/setup_vdo]
    /create
        description: Testing 'vdo create'
        /ack_threads
        /activate
    /modify
        description: Testing 'vdo modify'
        requires_setup+: [setups/setup_remote]
        /block_map_cache_size





You can find here not only how to use FMF for setup/cleanup
and group tests based on that, but also installing requirements,
passing values from metadata to tests themself and much more.



Format

Custom format output using --format and value.

List object name and selected attribute:

fmf examples/wget --format '{0}: {1}\n' \
    --value 'name' --value 'data["tester"]'





Show missing attributes in red:

fmf examples/wget/ --format '{}: {}\n' --value 'name' \
    --value 'utils.color(str(data.get("priority")),
    "red" if data.get("priority") is None else "green")'





List all test scripts with full path:

fmf examples --key test --format "{}/{}/{}\n" \
    --value "os.getcwd()" \
    --value "data.get('path') or name" \
    --value "data['test']"









          

      

      

    

  

    
      
          
            
  
Modules

Flexible Metadata Format


	
class fmf.Tree(data, name=None, parent=None)

	Metadata Tree


	
adjust(context, key='adjust', undecided='skip')

	Adjust tree data based on provided context and rules

The ‘context’ should be an instance of the fmf.context.Context
class describing the environment context. By default, the key
‘adjust’ of each node is inspected for possible rules that
should be applied. Provide ‘key’ to use a custom key instead.

Optional ‘undecided’ parameter can be used to specify what
should happen when a rule condition cannot be decided because
context dimension is not defined. By default, such rules are
skipped. In order to raise the fmf.context.CannotDecide
exception in such cases use undecided=’raise’.






	
child(name, data, source=None)

	Create or update child with given data






	
climb(whole=False)

	Climb through the tree (iterate leaf/all nodes)






	
commit

	Commit hash if tree grows under a git repo, False otherwise

Return current commit hash if the metadata tree root is located
under a git repository. For metadata initialized from a dict or
local directory with no git repo ‘False’ is returned instead.






	
copy()

	Create and return a deep copy of the node and its subtree

It is possible to call copy() on any node in the tree, not
only on the tree root node. Note that in that case, parent
node and the rest of the tree attached to it is not copied
in order to save memory.






	
find(name)

	Find node with given name






	
get(name=None, default=None)

	Get attribute value or return default

Whole data dictionary is returned when no attribute provided.
Supports direct values retrieval from deep dictionaries as well.
Dictionary path should be provided as list. The following two
examples are equal:

tree.data[‘hardware’][‘memory’][‘size’]
tree.get([‘hardware’, ‘memory’, ‘size’])

However the latter approach will also correctly handle providing
default value when any of the dictionary keys does not exist.






	
grow(path)

	Grow the metadata tree for the given directory path

Note: For each path, grow() should be run only once. Growing the tree
from the same path multiple times with attribute adding using the “+”
sign leads to adding the value more than once!






	
inherit()

	Apply inheritance






	
static init(path)

	Create metadata tree root under given path






	
merge(parent=None)

	Merge parent data






	
static node(reference)

	Return Tree node referenced by the fmf identifier

Keys supported in the reference:

url …. git repository url (optional)
ref …. branch, tag or commit (default branch if not provided)
path … metadata tree root (‘.’ by default)
name … tree node name (‘/’ by default)

See the documentation for the full fmf id specification:
https://fmf.readthedocs.io/en/latest/concept.html#identifiers
Raises ReferenceError if referenced node does not exist.






	
prune(whole=False, keys=None, names=None, filters=None, conditions=None)

	Filter tree nodes based on given criteria






	
show(brief=False, formatting=None, values=None)

	Show metadata






	
update(data)

	Update metadata, handle virtual hierarchy










	
fmf.filter(filter, data, sensitive=True, regexp=False)

	Return true if provided filter matches given dictionary of values

Filter supports disjunctive normal form with ‘|’ used for OR, ‘&’
for AND and ‘-’ for negation. Individual values are prefixed with
‘value:’, leading/trailing white-space is stripped. For example:

tag: Tier1 | tag: Tier2 | tag: Tier3
category: Sanity, Security & tag: -destructive





Note that multiple comma-separated values can be used as a syntactic
sugar to shorten the filter notation:

tag: A, B, C ---> tag: A | tag: B | tag: C





Values should be provided as a dictionary of lists each describing
the values against which the filter is to be matched. For example:

data = {tag: ["Tier1", "TIPpass"], category: ["Sanity"]}





Other types of dictionary values are converted into a string.
A FilterError exception is raised when a dimension parsed from the
filter is not found in the data dictionary. Set option ‘sensitive’
to False to enable case-insensitive matching. If ‘regexp’ option is
True, regular expressions can be used in the filter values as well.






base

Base Metadata Classes


	
class fmf.base.Tree(data, name=None, parent=None)

	Metadata Tree


	
adjust(context, key='adjust', undecided='skip')

	Adjust tree data based on provided context and rules

The ‘context’ should be an instance of the fmf.context.Context
class describing the environment context. By default, the key
‘adjust’ of each node is inspected for possible rules that
should be applied. Provide ‘key’ to use a custom key instead.

Optional ‘undecided’ parameter can be used to specify what
should happen when a rule condition cannot be decided because
context dimension is not defined. By default, such rules are
skipped. In order to raise the fmf.context.CannotDecide
exception in such cases use undecided=’raise’.






	
child(name, data, source=None)

	Create or update child with given data






	
climb(whole=False)

	Climb through the tree (iterate leaf/all nodes)






	
commit

	Commit hash if tree grows under a git repo, False otherwise

Return current commit hash if the metadata tree root is located
under a git repository. For metadata initialized from a dict or
local directory with no git repo ‘False’ is returned instead.






	
copy()

	Create and return a deep copy of the node and its subtree

It is possible to call copy() on any node in the tree, not
only on the tree root node. Note that in that case, parent
node and the rest of the tree attached to it is not copied
in order to save memory.






	
find(name)

	Find node with given name






	
get(name=None, default=None)

	Get attribute value or return default

Whole data dictionary is returned when no attribute provided.
Supports direct values retrieval from deep dictionaries as well.
Dictionary path should be provided as list. The following two
examples are equal:

tree.data[‘hardware’][‘memory’][‘size’]
tree.get([‘hardware’, ‘memory’, ‘size’])

However the latter approach will also correctly handle providing
default value when any of the dictionary keys does not exist.






	
grow(path)

	Grow the metadata tree for the given directory path

Note: For each path, grow() should be run only once. Growing the tree
from the same path multiple times with attribute adding using the “+”
sign leads to adding the value more than once!






	
inherit()

	Apply inheritance






	
static init(path)

	Create metadata tree root under given path






	
merge(parent=None)

	Merge parent data






	
static node(reference)

	Return Tree node referenced by the fmf identifier

Keys supported in the reference:

url …. git repository url (optional)
ref …. branch, tag or commit (default branch if not provided)
path … metadata tree root (‘.’ by default)
name … tree node name (‘/’ by default)

See the documentation for the full fmf id specification:
https://fmf.readthedocs.io/en/latest/concept.html#identifiers
Raises ReferenceError if referenced node does not exist.






	
prune(whole=False, keys=None, names=None, filters=None, conditions=None)

	Filter tree nodes based on given criteria






	
show(brief=False, formatting=None, values=None)

	Show metadata






	
update(data)

	Update metadata, handle virtual hierarchy










	
fmf.base.construct_yaml_str(self, node)

	




	
fmf.base.unique_key_constructor(loader, node, deep=False)

	YAML constructor that checks for duplicate keys







utils

Logging, config, constants & utilities


	
class fmf.utils.Coloring(mode=None)

	Coloring configuration


	
MODES = ['COLOR_OFF', 'COLOR_ON', 'COLOR_AUTO']

	




	
enabled()

	True if coloring is currently enabled






	
get()

	Get the current color mode






	
set(mode=None)

	Set the coloring mode

If enabled, some objects (like case run Status) are printed in color
to easily spot failures, errors and so on. By default the feature is
enabled when script is attached to a terminal. Possible values are:

COLOR=0 ... COLOR_OFF .... coloring disabled
COLOR=1 ... COLOR_ON ..... coloring enabled
COLOR=2 ... COLOR_AUTO ... if terminal attached (default)





Environment variable COLOR can be used to set up the coloring to the
desired mode without modifying code.










	
exception fmf.utils.FetchError

	Fatal error in helper command while fetching






	
exception fmf.utils.FileError

	File reading error






	
exception fmf.utils.FilterError

	Missing data when filtering






	
exception fmf.utils.FormatError

	Metadata format error






	
exception fmf.utils.GeneralError

	General error






	
class fmf.utils.Logging(name='fmf')

	Logging Configuration


	
COLORS = {4: 'magenta', 7: 'cyan', 10: 'green', 20: 'blue', 30: 'yellow', 40: 'red'}

	




	
class ColoredFormatter(fmt=None, datefmt=None, style='%')

	Custom color formatter for logging


	
format(record)

	Format the specified record as text.

The record’s attribute dictionary is used as the operand to a
string formatting operation which yields the returned string.
Before formatting the dictionary, a couple of preparatory steps
are carried out. The message attribute of the record is computed
using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is
called to format the event time. If there is exception information,
it is formatted using formatException() and appended to the message.










	
LEVELS = ['CRITICAL', 'DEBUG', 'ERROR', 'FATAL', 'INFO', 'NOTSET', 'WARN', 'WARNING']

	




	
MAPPING = {0: 30, 1: 20, 2: 10, 3: 7, 4: 4, 5: 1}

	




	
get()

	Get the current log level






	
set(level=None)

	Set the default log level

If the level is not specified environment variable DEBUG is used
with the following meaning:

DEBUG=0 ... LOG_WARN (default)
DEBUG=1 ... LOG_INFO
DEBUG=2 ... LOG_DEBUG
DEBUG=3 ... LOG_CACHE
DEBUG=4 ... LOG_DATA
DEBUG=5 ... LOG_ALL (log all messages)














	
exception fmf.utils.MergeError

	Unable to merge data between parent and child






	
exception fmf.utils.ReferenceError

	Referenced tree node cannot be found






	
exception fmf.utils.RootError

	Metadata tree root missing






	
fmf.utils.clean_cache_directory()

	Delete used cache directory if it exists






	
fmf.utils.color(text, color=None, background=None, light=False, enabled='auto')

	Return text in desired color if coloring enabled

Available colors: black red green yellow blue magenta cyan white.
Alternatively color can be prefixed with “light”, e.g. lightgreen.






	
fmf.utils.dict_to_yaml(data, width=None, sort=False)

	Convert dictionary into yaml






	
fmf.utils.evaluate(expression, data, _node=None)

	Evaluate arbitrary Python expression against given data

Expects data dictionary which will be used to populate local
namespace. Used to provide flexible conditions for filtering.






	
fmf.utils.fetch(url, ref=None, destination=None, env=None)

	Deprecated: Use fetch_repo() instead






	
fmf.utils.fetch_repo(url, ref=None, destination=None, env=None)

	Fetch remote git repository and return local directory

Fetch git repository from provided url into a local cache directory,
checkout requested ref and return path to the repo. If no ref is
provided, the default branch from the origin is used. If destination
directory is provided, it should not exist or needs to be empty. Use
dictionary env to set environment variables for git calls.

Raises FetchError upon failure with the original exception included.






	
fmf.utils.fetch_tree(url, ref=None, path='.')

	Get initialized Tree from a remote git repository

url …. git repository url (required)
ref …. branch, tag or commit (default branch if None)
path … metadata tree root (default to ‘.’)

See fmf.base.Tree.node() to canonical default values.

Remote repository is cached locally (see get_cache_directory()),
local directory with cache is locked during reading.

Raises GeneralError when lock couldn’t be acquired.






	
fmf.utils.filter(filter, data, sensitive=True, regexp=False)

	Return true if provided filter matches given dictionary of values

Filter supports disjunctive normal form with ‘|’ used for OR, ‘&’
for AND and ‘-’ for negation. Individual values are prefixed with
‘value:’, leading/trailing white-space is stripped. For example:

tag: Tier1 | tag: Tier2 | tag: Tier3
category: Sanity, Security & tag: -destructive





Note that multiple comma-separated values can be used as a syntactic
sugar to shorten the filter notation:

tag: A, B, C ---> tag: A | tag: B | tag: C





Values should be provided as a dictionary of lists each describing
the values against which the filter is to be matched. For example:

data = {tag: ["Tier1", "TIPpass"], category: ["Sanity"]}





Other types of dictionary values are converted into a string.
A FilterError exception is raised when a dimension parsed from the
filter is not found in the data dictionary. Set option ‘sensitive’
to False to enable case-insensitive matching. If ‘regexp’ option is
True, regular expressions can be used in the filter values as well.






	
fmf.utils.get_cache_directory(create=True)

	Return cache directory, created by this call if necessary

Cache directory is (first existing):
- Value of FMF_CACHE_DIRECTORY environment variable
- Value set by the last call of set_cache_directory()
- $XDG_CACHE_HOME/fmf
- ~/.cache/fmf

Raise GeneralError if it is not possible to create it.






	
fmf.utils.info(message, newline=True)

	Log provided info message to the standard error output






	
fmf.utils.invalidate_cache()

	Force fetch next time cache is used regardless its age






	
fmf.utils.listed(items, singular=None, plural=None, max=None, quote='', join='and')

	Convert an iterable into a nice, human readable list or description:

listed(range(1)) .................... 0
listed(range(2)) .................... 0 and 1
listed(range(3), join='or') ......... 0, 1 or 2
listed(range(3), quote='"') ......... "0", "1" and "2"
listed(range(4), max=3) ............. 0, 1, 2 and 1 more
listed(range(5), 'number', max=3) ... 0, 1, 2 and 2 more numbers
listed(range(6), 'category') ........ 6 categories
listed(7, "leaf", "leaves") ......... 7 leaves





If singular form is provided but max not set the description-only
mode is activated as shown in the last two examples. Also, an int
can be used in this case to get a simple inflection functionality.






	
fmf.utils.pluralize(singular=None)

	Naively pluralize words






	
fmf.utils.repr_str(dumper, data)

	




	
fmf.utils.run(command, cwd=None, check_exit_code=True, env=None)

	Run command and return a (stdout, stderr) tuple

:command as list (name, arg1, arg2…)
:cwd path to directory where to run the command
:check_exit_code raise CalledProcessError if exit code is non-zero
:env dictionary of the environment variables for the command






	
fmf.utils.set_cache_directory(cache_directory)

	Set preferred cache directory






	
fmf.utils.set_cache_expiration(seconds)

	Seconds until cache expires






	
fmf.utils.split(values, separator=re.compile(', []+'))

	Convert space-or-comma-separated values into a single list

Common use case for this is merging content of options with multiple
values allowed into a single list of strings thus allowing any of
the formats below and converts them into [‘a’, ‘b’, ‘c’]:

--option a --option b --option c ... ['a', 'b', 'c']
--option a,b --option c ............ ['a,b', 'c']
--option 'a b c' ................... ['a b c']





Accepts both string and list. By default space and comma are used as
value separators. Use any regular expression for custom separator.







cli

This is command line interface for the Flexible Metadata Format.

Available commands are:

fmf ls      List identifiers of available objects
fmf show    Show metadata of available objects
fmf init    Initialize a new metadata tree
fmf clean   Remove cache directory and its content





See online documentation for more details and examples:


http://fmf.readthedocs.io/




Check also help message of individual commands for the full list
of available options.


	
class fmf.cli.Parser(arguments=None, path=None)

	Command line options parser


	
clean()

	Remove cache directory






	
command_clean()

	Clean cache






	
command_init()

	Initialize tree






	
command_ls()

	List names






	
command_show()

	Show metadata






	
options_formatting()

	Formating options






	
options_select()

	Select by name, filter






	
options_utils()

	Utilities






	
show(brief=False)

	Show metadata for each path given










	
fmf.cli.main(arguments=None, path=None)

	Parse options, do what is requested









          

      

      

    

  

    
      
          
            
  
Contribute


Introduction

Feel free and welcome to contribute to this project. You can start
with filing issues and ideas for improvement in GitHub tracker [https://github.com/psss/fmf].
Our favorite thoughts from The Zen of Python:


	Beautiful is better than ugly.


	Simple is better than complex.


	Readability counts.




We respect the PEP8 [https://www.python.org/dev/peps/pep-0008/] Style Guide for Python Code. Here’s a
couple of recommendations to keep on mind when writing code:


	Comments should be complete sentences.


	The first word should be capitalized (unless identifier).


	When using hanging indent, the first line should be empty.


	The closing brace/bracket/parenthesis on multiline constructs
is under the first non-whitespace character of the last line






Commits

It is challenging to be both concise and descriptive, but that is
what a well-written summary should do. Consider the commit message
as something that will be pasted into release notes:


	The first line should have up to 50 characters.


	Complete sentence with the first word capitalized.


	Should concisely describe the purpose of the patch.


	Do not prefix the message with file or module names.


	Other details should be separated by a blank line.




Why should I care?


	It helps others (and yourself) find relevant commits quickly.


	The summary line will be re-used later (e.g. for rpm changelog).


	Some tools do not handle wrapping, so it is then hard to read.


	You will make the maintainers happy to read beautiful commits :)




You can get some more context in the stackoverflow [http://stackoverflow.com/questions/2290016/] article.



Develop

In order to experiment, play with the latest bits and develop
improvements it is best to use a virtual environment:

mkvirtualenv fmf
git clone https://github.com/psss/fmf
cd fmf
pip install -e .





Install python3-virtualenvwrapper to easily create and enable
virtual environments using mkvirtualenv and workon. Note
that if you have freshly installed the package you need to open a
new shell session to enable the wrapper functions.

Install the pre-commit hooks to run all available checks for
your commits to the project:

pip install pre-commit
pre-commit install







Makefile

There are several Makefile targets defined to make the common
daily tasks easy & efficient:


	make test

	Execute the test suite.



	make smoke

	Perform quick basic functionality test.



	make coverage

	Run the test suite under coverage and report results.



	make docs

	Build documentation.



	make packages

	Build rpm and srpm packages.



	make tags

	Create or update the Vim tags file for quick searching.
You might want to use set tags=./tags; in your .vimrc
to enable parent directory search for the tags file as well.



	make clean

	Cleanup all temporary files.







Tests

Run the default set of tests directly on your localhost:

tmt run





To run tests using pytest with the test coverage overview:

make coverage





Install pytest and coverage using dnf or pip:

dnf install python3-pytest python3-coverage
pip install pytest coveralls







Docs

For building documentation locally install necessary modules:

pip install sphinx sphinx_rtd_theme mock





Make sure docutils are installed in order to build man pages:

dnf install python3-docutils





Building documentation is then quite straightforward:

make docs





Find the resulting html pages under the docs/_build/html
folder.





          

      

      

    

  

    
      
          
            

   Python Module Index


   
   f
   


   
     		 	

     		
       f	

     
       	[image: -]
       	
       fmf	
       

     
       	
       	   
       fmf.base	
       

     
       	
       	   
       fmf.cli	
       

     
       	
       	   
       fmf.utils	
       

   



          

      

      

    

  

    
      
          
            

Index



 A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 


A


  	
      	adjust() (fmf.base.Tree method)

      
        	(fmf.Tree method)


      


  





C


  	
      	child() (fmf.base.Tree method)

      
        	(fmf.Tree method)


      


      	clean() (fmf.cli.Parser method)


      	clean_cache_directory() (in module fmf.utils)


      	climb() (fmf.base.Tree method)

      
        	(fmf.Tree method)


      


      	color() (in module fmf.utils)


      	Coloring (class in fmf.utils)


      	COLORS (fmf.utils.Logging attribute)


  

  	
      	command_clean() (fmf.cli.Parser method)


      	command_init() (fmf.cli.Parser method)


      	command_ls() (fmf.cli.Parser method)


      	command_show() (fmf.cli.Parser method)


      	commit (fmf.base.Tree attribute)

      
        	(fmf.Tree attribute)


      


      	construct_yaml_str() (in module fmf.base)


      	copy() (fmf.base.Tree method)

      
        	(fmf.Tree method)


      


  





D


  	
      	dict_to_yaml() (in module fmf.utils)


  





E


  	
      	enabled() (fmf.utils.Coloring method)


  

  	
      	evaluate() (in module fmf.utils)


  





F


  	
      	fetch() (in module fmf.utils)


      	fetch_repo() (in module fmf.utils)


      	fetch_tree() (in module fmf.utils)


      	FetchError


      	FileError


      	filter() (in module fmf)

      
        	(in module fmf.utils)


      


      	FilterError


  

  	
      	find() (fmf.base.Tree method)

      
        	(fmf.Tree method)


      


      	fmf (module)


      	fmf.base (module)


      	fmf.cli (module)


      	fmf.utils (module)


      	format() (fmf.utils.Logging.ColoredFormatter method)


      	FormatError


  





G


  	
      	GeneralError


      	get() (fmf.base.Tree method)

      
        	(fmf.Tree method)


        	(fmf.utils.Coloring method)


        	(fmf.utils.Logging method)


      


  

  	
      	get_cache_directory() (in module fmf.utils)


      	grow() (fmf.base.Tree method)

      
        	(fmf.Tree method)


      


  





I


  	
      	info() (in module fmf.utils)


      	inherit() (fmf.base.Tree method)

      
        	(fmf.Tree method)


      


  

  	
      	init() (fmf.base.Tree static method)

      
        	(fmf.Tree static method)


      


      	invalidate_cache() (in module fmf.utils)


  





L


  	
      	LEVELS (fmf.utils.Logging attribute)


      	listed() (in module fmf.utils)


  

  	
      	Logging (class in fmf.utils)


      	Logging.ColoredFormatter (class in fmf.utils)


  





M


  	
      	main() (in module fmf.cli)


      	MAPPING (fmf.utils.Logging attribute)


      	merge() (fmf.base.Tree method)

      
        	(fmf.Tree method)


      


  

  	
      	MergeError


      	MODES (fmf.utils.Coloring attribute)


  





N


  	
      	node() (fmf.base.Tree static method)

      
        	(fmf.Tree static method)


      


  





O


  	
      	options_formatting() (fmf.cli.Parser method)


  

  	
      	options_select() (fmf.cli.Parser method)


      	options_utils() (fmf.cli.Parser method)


  





P


  	
      	Parser (class in fmf.cli)


      	pluralize() (in module fmf.utils)


  

  	
      	prune() (fmf.base.Tree method)

      
        	(fmf.Tree method)


      


  





R


  	
      	ReferenceError


      	repr_str() (in module fmf.utils)


  

  	
      	RootError


      	run() (in module fmf.utils)


  





S


  	
      	set() (fmf.utils.Coloring method)

      
        	(fmf.utils.Logging method)


      


      	set_cache_directory() (in module fmf.utils)


      	set_cache_expiration() (in module fmf.utils)


  

  	
      	show() (fmf.base.Tree method)

      
        	(fmf.Tree method)


        	(fmf.cli.Parser method)


      


      	split() (in module fmf.utils)


  





T


  	
      	Tree (class in fmf)

      
        	(class in fmf.base)


      


  





U


  	
      	unique_key_constructor() (in module fmf.base)


  

  	
      	update() (fmf.base.Tree method)

      
        	(fmf.Tree method)


      


  







          

      

      

    

  _static/comment-bright.png





_static/comment-close.png





_static/ajax-loader.gif





_static/down.png





_static/comment.png





_static/down-pressed.png





_static/file.png





_static/minus.png





_static/plus.png





nav.xhtml

    
      Table of Contents


      
        		
          fmf
        


        		
          Overview
          
            		
              Description
            


            		
              Synopsis
            


            		
              Examples
            


            		
              Options
              
                		
                  Select
                


                		
                  Format
                


                		
                  Utils
                


              


            


            		
              Install
            


            		
              Variables
            


            		
              Links
            


            		
              Authors
            


            		
              Copyright
            


          


        


        		
          Concept
          
            		
              Stones
            


            		
              Stories
            


            		
              Choices
            


            		
              Files
            


            		
              Attributes
            


            		
              Trees
            


            		
              Names
            


            		
              Identifiers
            


          


        


        		
          Features
          
            		
              Simple
            


            		
              Hierarchy
            


            		
              Inheritance
            


            		
              Merging
            


            		
              Elasticity
            


            		
              Scatter
            


            		
              Leaves
            


            		
              Virtual
            


            		
              Adjust
            


            		
              Format
            


          


        


        		
          Context
          
            		
              Motivation
            


            		
              Syntax
              
                		
                  Lazy Evaluation
                


                		
                  Boolean Operations
                


              


            


            		
              Dimensions
            


            		
              Comparison
              
                		
                  Equality vs Comparison
                


                		
                  Major Version
                


              


            


          


        


        		
          Examples
          
            		
              Coverage
            


            		
              Strategist
            


            		
              Setups
            


            		
              Format
            


          


        


        		
          Modules
          
            		
              base
            


            		
              utils
            


            		
              cli
            


          


        


        		
          Contribute
          
            		
              Introduction
            


            		
              Commits
            


            		
              Develop
            


            		
              Makefile
            


            		
              Tests
            


            		
              Docs
            


          


        


      


    
  

_static/up.png





_static/up-pressed.png





